A multiwave approximate Riemann solver for ideal MHD based on relaxation II: numerical implementation with 3 and 5 waves
نویسندگان
چکیده
In the first part of this work ([5]), we introduced an approximate Riemann solver for one-dimensional ideal MHD derived from a relaxation system. We gave sufficient conditions for the solver to satisfy discrete entropy inequalities, and to preserve positivity of density and internal energy. In this paper we consider the practical implementation, and derive explicit wave speed estimates satisfying the stability conditions of [5]. We present a 3-wave solver that well resolves fast waves and material contacts, and a 5-wave solver that accurately resolves the cases when two eigenvalues coincide. A full 7-wave solver, which is highly accurate on all types of waves, will be described in a follow-up paper. We test the solvers on one-dimensional shock tube data and smooth shear waves.
منابع مشابه
A multiwave approximate Riemann solver for ideal MHD based on relaxation. I: theoretical framework
We present a relaxation system for ideal MHD that is an extension of the Suliciu relaxation system for the Euler equations of gas dynamics. From it one can derive approximate Riemann solvers with three or seven waves, that generalize the HLLC solver for gas dynamics. Under some subcharacteristic conditions, the solvers satisfy discrete entropy inequalities, and preserve positivity of density an...
متن کاملA multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics
A new multi-state Harten–Lax–van Leer (HLL) approximate Riemann solver for the ideal magnetohydrodynamic (MHD) equations is developed based on the assumption that the normal velocity is constant over the Riemann fan. This assumption is same as that used in the HLLC (‘‘C’’ denotes Contact) approximate Riemann solver for the Euler equations. From the assumption, it is naturally derived that the R...
متن کاملA simple and accurate Riemann solver for isothermal MHD
A new approximate Riemann solver for the equations of magnetohydrodynamics (MHD) with an isothermal equation of state is presented. The proposed method of solution draws on the recent work of Miyoshi and Kusano, in the context of adiabatic MHD, where an approximate solution to the Riemann problem is sought in terms of an average constant velocity and total pressure across the Riemann fan. This ...
متن کاملHLLC solver for ideal relativistic MHD
An approximate Riemann solver of Godunov type for ideal relativistic magnetohydrodynamic equations (RMHD) named as HLLC (“C” denotes contact) is developed. In HLLC the Riemann fan is approximated by two intermediate states, which are separated by the entropy wave. Numerical tests show that HLLC resolves contact discontinuity more accurately than the Harten-Lax-van Leer (HLL) method and an isola...
متن کاملNumerical Magnetohydrodynamics in Astrophysics: Algorithm and Tests for One-Dimensional Flow
We describe a numerical code to solve the equations for ideal magnetohydrodynamics (MHD). It is based on an explicit finite difference scheme on an Eulerian grid, called the Total Variation Diminishing (TVD) scheme, which is a second-order-accurate extension of the Roe-type upwind scheme. We also describe a nonlinear Riemann solver for ideal MHD, which includes rarefactions as well as shocks an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Numerische Mathematik
دوره 115 شماره
صفحات -
تاریخ انتشار 2010